• ArquímidesLa inteligencia más grande de la antigüedad, es moderno hasta el tuétano ...
  • Isaac NewtonSus sucesores, capaces de apreciar su obra han afirmado, que Newton es la inteligencia suprema que la raza humana ha producido.
  • Carl GaussEl rigor que Gauss impuso al Análisis se proyectó sobre toda en la Matemática, tanto en sus propias ideas como contemporáneos.
  • Leonard EulerEuler calculaba sin aparente esfuerzo como las águilas se sostienen en el aire.
  • Pierre LaplaceComo astrónomo matemático Laplace ha sido justamente llamado el Newton de Francia.
Isaac Newton1 Rafael Nadal2 Roger Federer3 Héctor Tasayco4 El Comercio5
http://wowslider.com/ by WOWSlider.com v8.7
Biografía de Grandes Matemáticos
  • Para apreciar nuestra propia Edad de Oro de la Matemática debemos tener en cuenta algunas de las grandes y sencillas directrices de aquellos cuyo genio preparó hace largo tiempo el camino para nosotros, -y debemos lanzar una ojeada a las vidas y obras de tres griegos: Zenón (495-435 a. de J. C.), Eudoxio (408-355 a. de J. C.) y Arquímedes (287-212 a. de J. C.) Euclides será mencionado más tarde, donde encuadra mejor su obra.

    Zenón y Eudoxio son representantes de dos vigorosas y opuestas escuelas de pensamiento matemático que florecen en la actualidad, la crítica destructiva y la crítica constructiva. La mente de ambos poseía un espíritu crítico tan penetrante como la de sus sucesores de los siglos XIX y XX. Este juicio puede, como es natural, invertirse: Kronecker (1823-1891) y Brouwer (1881- ), los críticos modernos del Análisis matemático, las teorías del infinito y del continuo, son tan antiguas como Zenón; los creadores de las teorías modernas de la continuidad y el infinito, Weierstrass (1815-1897), Dedekind (1831-1916) y Cantor (1845-1918) son contemporáneos intelectuales de Eudoxio.
    Arquímedes, la inteligencia más grande de la antigüedad, es moderno hasta el tuétano. Él y Newton podían haberse comprendido perfectamente, y es muy posible que Arquímedes, si hubiera podido vivir hasta seguir un curso de postgraduado en Matemática y física, hubiera comprendido a Einstein, Bohr, Heisenberg y Dirac mejor que éstos se han comprendido entre sí.
    De todos los antiguos, Arquímedes es el único cuyo pensamiento gozó de la libertad que los matemáticos más grandes se permiten actualmente después de que 25 siglos han alisado su camino. Arquímedes es el único entre los griegos que tuvo suficiente altura y vigor para ver claro a través de los obstáculos colocados en la, senda del progreso matemático por los aterrorizados geómetras que habían escuchado a los filósofos.

  • "Deseo unicamente tranquilidad y reposo". Éstas son las palabras del hombre que desvió la Matemática hacia nuevos caminos y cambió el curso de la historia científica. Muchas veces, en su activa vida, René Descartes intentó encontrar la tranquilidad que buscaba en los campos militares, y con objeto de obtener un reposo necesario para la meditación buscó retiros solitarios lejos de los amigos curiosos y exigentes. Deseando únicamente tranquilidad y reposo, nació el 31 de marzo de 1596, en La Haye, cerca de Tours, Francia, en una Europa entregada a la guerra, en las aflicciones de la reconstrucción religiosa y política.
    Su época no era muy diferente de la nuestra. Un viejo orden pasaba rápidamente y el nuevo no había sido aún establecido. Barones, reyes y nobles rapaces de la Edad Media, habían criado un enjambre de gobernadores con la ética política de asaltantes y en su mayor parte con la inteligencia de cargadores. La justicia común entendía que lo tuyo era mío, con tal que mi brazo fuera suficientemente fuerte para mantenerlo lejos de sí. Esto es una descripción poco halagadora de ese glorioso período de la historia, europea, denominado finales del Renacimiento, pero está de perfecto acuerdo con nuestra cambiante opinión, hija de experiencias íntimas, de, lo que sería, aquella sociedad civilizada.
    Por encima de las guerras, en los días de Descartes, se superponían un enorme fanatismo religioso y una grave intolerancia que incubaban nuevas guerras y hacían del desapasionado cultivo de la ciencia una empresa azarosa. Había que añadir además una total ignorancia de las reglas más elementales de la limpieza. Desde el punto de vista de las condiciones sanitarias, la mansión de los ricos era tan inmunda como la de los pobres, sumergidos en la hediondez y la ignorancia, y las plagas que se repetían ayudaban a las guerras epidémicas a mantener a la población por debajo de los límites del hambre. Así eran los inolvidables viejos días.
    En la inmaterial parte durable del andamiaje, el relato es más brillante. La edad en que Descartes vivió fue, en efecto, uno de los grandes períodos intelectuales en la historia de la civilización. Para mencionar tan sólo algunos de los hombres sobresalientes cuyas vidas coincidieron en parte con la de Descartes, recordaremos que Fermat y Pascal fueron sus contemporáneos en Matemática; Shakespeare murió cuando Descartes tenía 20 años; Descartes sobrevivió a Galileo ocho años, y Newton tenía ocho años cuando Descartes murió; Descartes tenía 12 años cuando Milton nació, y Harvey, el descubridor de la circulación de la sangre, sobrevivió a Descartes 7 años, mientras Gilbert, el fundador de la ciencia del electromagnetismo, murió cuando Descartes tenía 7 años.

  • No todos nuestros patos pueden ser cisnes; así, después de haber mostrado a Descartes como uno de los grandes matemáticos de todas las épocas, debemos justificar la afirmación, frecuentemente hecha y rara vez discutida, de que el más grande matemático del siglo XVII fue el contemporáneo de Descartes, Fermat (1601 - 1665). Como es natural, dejamos aparte a Newton (1642 - 1727).
    Puede afirmarse que Fermat fue al menos igual a Newton como matemático puro, pero, de todos modos, casi un tercio de la vida de Newton corresponde al siglo XVIII, mientras que toda la vida de Fermat se desenvolvió en el siglo XVII.
    Newton parece haber considerado su Matemática como un instrumento para la exploración científica, y puso su mayor esfuerzo en esta última. Fermat, en cambio, era más atraído por la Matemática pura, aunque también hizo notables trabajos en las aplicaciones de la Matemática a la ciencia, particularmente a la óptica. La Matemática entró en su fase moderna con la publicación de Descartes de la Geometría analítica en 1637 y fue aún durante muchos años de tan modesto desarrollo que un hombre de talento podía esperar hacer grandes cosas tanto en la forma pura como en la forma aplicada.
    Como matemático puro, Newton alcanzó su culminación con la invención del Cálculo infinitesimal, que también se debe, independientemente, a Leibniz. Más adelante nos detendremos sobre estas cuestiones, pero ahora haremos notar que Fermat concibió y aplicó la idea directriz del Cálculo diferencial trece años antes de que naciera Newton y diecisiete antes de que naciera Leibniz, aunque no llegó a reducir, como hizo Leibniz, su método a una serie de reglas comunes, que hasta un bobo puede aplicar a fáciles problemas.
    Del mismo modo, Descartes y Fermat inventaron la Geometría independientemente uno de otro. La mayor parte del esfuerzo de Descartes corresponde a la investigación científica del tipo más variado, a la elaboración de su filosofía y a su disparatada "teoría de los torbellinos" del sistema solar, que aun en Inglaterra fue durante largo tiempo una seria rival de la más bella, más sencilla y no metafísica teoría newtoniana de la gravitación universal. Parece que Fermat jamás fue tentado, como Descartes y Pascal, a filosofar, por una engañosa seducción acerca de Dios, del hombre y del Universo como un todo; así, después de haber realizado su labor en el Cálculo y la Geometría analítica y de haber vivido una vida serena, de arduo trabajo, con el que ganó lo necesario para su vida, tuvo tiempo para dedicar el resto de sus energías a su distracción favorita, la Matemática pura, y cumplir su más grande obra, la fundación de la teoría de números, sobre la cual reposa indiscutido y única su inmortalidad.
    Recordaremos también que Fermat participó con Pascal en la creación de la teoría matemática de la probabilidad. Si todas estas adquisiciones de primera categoría no son suficiente para ponerle a la cabeza de sus contemporáneos en la Matemática pura, podemos preguntarnos: ¿quién hizo más? Fermat era creador ingénitamente. Era también, en el estricto sentido de la palabra, en lo que se refiere a su ciencia de la matemática, un aficionado. Sin duda es uno de los más grandes aficionados en la historia de la ciencia, y quizá "Sea el primero". La vida de Fermat fue tranquila y laboriosa, pues tuvo una extraordinaria suerte. Los hechos esenciales de su pacífica carrera pueden ser rápidamente referidos. Hijo del comerciante en pieles Dominique Fermat, segundo cónsul de Beaumont, y Claire de Long, hija de una familia de juristas parlamentarios, el matemático Pierre Fermat nació en Beaumont de Lomagne, Francia, en el mes de agosto de 1601 (la fecha exacta es desconocida, el día del bautismo fue el 20 de agosto). Su primera educación la recibió en el hogar, en su ciudad nativa; sus estudios posteriores para la preparación a la magistratura fueron continuados en Toulouse.
    Como Fermat vivió tranquilo y reposadamente, evitando las disputas sin provecho, y como no tuvo una cariñosa hermana como Gilberte, la hermana de Pascal, que recordara sus prodigios de adolescente para la posteridad, poco es lo que se sabe de sus años de estudio. Deben haber sido brillantes, pues los descubrimientos de su madurez dan prueba de ello. Ningún hombre sin un sólido fundamento en sus estudios previos pudo haber sido el conocedor de los clásicos y el notable literato que Fermat fue. Su maravillosa obra en la teoría de números y en la Matemática en general no puede ser referida a la Instrucción que recibió, pues los campos donde hizo su máximo descubrimiento no estaban abiertos cuando era estudiante.

  • Veintisiete años tenía Descartes cuando Blaise Pascal nació en Clermont, Auvernia, Francia, el 19 de junio de 1623, y éste sobrevivió a Descartes 12 años. Su padre Etienne Pascal, presidente de la Corte de Auvernia, en Clermont, era un hombre de cultura, considerado en su tiempo como un intelectual; su madre Antoinette Bégone murió cuando su hijo tenía cuatro años. Pascal tenía dos bellas e inteligentes hermanas, Gilberte, más tarde Madame Périer, y Jacqueline; ambas, especialmente la última, habían de desempeñar papeles importantes en su vida.
    Blaise Pascal es más conocido para el lector general por sus dos obras literarias, los Pensées y las Lettres écrites par Louis de Montalle à un provincial de ses amis, y es habitual condensar su carrera matemática en algunos párrafos dentro del relato de sus prodigios religiosos. En este lugar, nuestro punto de vista debe necesariamente diferir, y consideraremos primeramente a Pascal como un matemático de gran talento, que por sus tendencias masoquistas de autotortura y especulaciones sin provecho sobre las controversias sectarias de su tiempo, cayó en lo que podemos llamar neurosis religiosa. La faceta matemática de Pascal es quizá una de las más importantes de la historia. Tuvo la desgracia de preceder a Newton por sólo muy pocos años, y de ser contemporáneo de Descartes y Fermat, hombres más equilibrados que él. Su obra más original, la creación de la teoría matemática de probabilidades, se debe también a Fermat, quien pudo fácilmente haberla formulado solo. En Geometría, en la cual es famoso como una especie de niño prodigio, la idea creadora fue proporcionada por un hombre, Desargues, de mucha menos celebridad.
    En su esquema sobre la ciencia experimental, Pascal tuvo una visión mucho más clara que Descartes, desde el punto de vista moderno del método científico, pero le faltaba la exclusividad de objeto de Descartes, y aunque a él se deben estudios de primera categoría, se desvió de lo que pudiera haber hecho a causa de su morbosa pasión por las disquisiciones religiosas.
    Es inútil especular sobre lo que Pascal podría haber hecho. Narraremos su vida tal como fue, y al considerarle como matemático diremos que hizo lo que estaba en él y que ningún hombre podría haber hecho más. Su vida es un constante comentario de dos de las historias, o símiles del Nuevo Testamento, que era su constante compañero y su infalible amparo: la parábola de los talentos y la observación acerca de que el vino nuevo rompe los odres viejos. Si hubo un hombre maravillosamente dotado que sepultara su talento, fue Pascal, y si hubo una mente medieval que se quebrara en su intento de mantener el nuevo vino de la ciencia del siglo XVII fue la de Pascal. Sus grandes dotes habrían sido concedidas por equivocación a la persona que Pascal fue.
    A la edad de 7 años Pascal se trasladó con su padre y hermanas, desde Clermont a París. Por este tiempo el padre comenzó a enseñar a su hijo. Pascal era un niño extraordinariamente precoz.

    Tanto él como sus hermanas parece que han tenido un talento natural notable. Pero el pobre Blaise heredó (o adquirió) un miserable físico con una mente brillante, y Jacqueline, la más inteligente de sus hermanas, parece haber sido semejante a su hermano, pues cayó víctima de una morbosa religiosidad.
    Al principio todas las cosas marchaban bien. El padre, asombrado de la facilidad con que su hijo absorbía la educación clásica de la época intentó mantener al muchacho en una relativa tranquilidad para que su salud no se quebrantara. La Matemática era tabú, basándose en la teoría de que los genios jóvenes pueden malgastarse al emplear excesivamente su cerebro. Su padre en realidad era un mal psicólogo. Este temor por la Matemática excitó, como es natural, la curiosidad del muchacho. Un día, teniendo 12 años, quiso saber lo que era la Geometría. Su padre le hizo una clara descripción, y Pascal creyó adivinar repentinamente su verdadera vocación. En contradicción con sus opiniones posteriores, Pascal había sido llamado por Dios no para atormentar a los jesuitas, sino para ser un gran matemático. Pero sus oídos eran sordos y percibió las órdenes confusamente.

  • "No sé lo que el mundo pensará de mí, pero a mí me parece ser tan solo un muchacho que juega en la playa y que se divierte al encontrar canto rodado o una concha más hermosa que de ordinario, mientras el gran océano de la verdad yace ante mis ojos sin descubrir".
    Esta era la idea que tenía de sí Isaac Newton al final de su larga vida. Sin embargo, sus sucesores, capaces de apreciar su obra, han afirmado, casi sin excepción, que Newton es la inteligencia suprema que la raza humana ha producido "cuyo genio superó el tipo humano".
    Isaac Newton nació el día de Navidad ("antiguo estilo" de fechar) de 1642, el año de la muerte de Galileo. Procedía de una familia de pequeños pero independientes granjeros que vivían en la casa señorial la aldea de Woolsthorpe, 13 kilómetros al sur de Grantham en el condado de Lincoln, Inglaterra. Su padre, también llamado Isaac, murió a la edad de 37 años, antes de que naciera su hijo.

        Newton fue un prematuro. Cuando nació era tan frágil y desmedrado que dos mujeres que habían ido a buscar un "tónico" a la casa de un vecino, creían que a su regreso el niño habría muerto. Su madre decía que era tan pequeño al nacer que cabía fácilmente en un cubo de un litro.
    No se conoce suficientemente la genealogía de Newton, que podría ser interesante para los estudiosos de la herencia. Su padre era considerado por los vecinos como un "hombre débil, violento y extravagante". Su madre, Hannah Ayscough, era económica, diligente y buena ama de casa. Después de la muerte de su marido Mrs. Newton fue recomendada como una viuda previsora a un viejo bachiller diciéndole que era "extraordinariamente una buena mujer". El cauteloso bachiller, el reverendo Barnabas Smith, de la parroquia vecina de North Witham, contrajo matrimonio con la viuda. Mrs. Smith dejó a su hijo de tres años al cuidado de su abuela. En su segundo matrimonio tuvo tres hijos, ninguno de los cuales mostró una capacidad especial. De las propiedades del segundo matrimonio de la madre y de las propiedades del padre Newton tenía un ingreso 80 libras al año, que, como es natural, era mucho más en el siglo XVII de lo que podían serlo ahora.
    Newton no era, pues, uno de los grandes matemáticos que tuvo que luchar con la pobreza. Siendo niño, Newton, como no era robusto, se veía forzado a prescindir de los toscos juegos de los niños de su edad. En lugar de divertirse del modo usual, Newton inventaba otras diversiones, que ya revelan su genio. Se ha dicho por algunos que Newton no fue precoz. Podrá ser cierto por lo que a la Matemática se refiere, pero si sedice lo mismo en otros aspectos, será necesario hacer una nueva definición de la precocidad. El genio experimental insuperable que Newton mostró como observador de los misterios de la luz se revela ya en la ingeniosidad de sus diversiones infantiles. Linternas para aterrorizar a los crédulos aldeanos durante la noche, juguetes mecánicos perfectamente construidos que él fabricaba por sí mismo y que se movían, ruedas hidráulicas, un molino que molía trigo, proporcionando una nívea harina, con un gran ratón (que devoraba la mayor parte de ella), relojes de sol y un reloj de madera que marchaba automáticamente. Tales eran algunas de las cosas con que este muchacho "no precoz" intentaba divertir a sus compañeros de juego, encauzándoles por vías "más filosóficas". Aparte de estas evidentes muestras de talento, Newton leía mucho y  apuntaba en su cuaderno todas las recetas misteriosas y todos los fenómenos extraños que se producían ante sus ojos.
    La primera parte de la educación de Newton tuvo lugar en la escuela vecina. Un tío materno, el reverendo William Ayscough parece haber sido el primero en reconocer que Newton era algo diferente de muchacho. Graduado en Cambridge, Ayscough persuadió a la madre de Newton de que enviara a su hijo a Cambridge mantenerlo en su hogar, como ella pensaba, para ayudar a de la granja, a su vuelta a Woolsthorpe, después de la muerte o, cuando Newton tenía 15 años.
    Antes de esto, sin embargo, Newton había cruzado su Rubicón por propia iniciativa. Por consejo de su tío había sido enviado a la Grammar School de Grantham, donde era atormentado por el camorrista la escuela, que un día golpeó a Newton en el estómago, causándole dolor físico y una intensa angustia mental. Alentado por uno de los profesores, Newton desafió al camorrista a una pelea limpia; se arrojó sobre él y como un final signo de humillación frotó las cobardes narices de su enemigo contra la pared de la iglesia. Hasta entonces Newton no había demostrado gran interés en las lecciones, pero ahora quiso probar que su cabeza era tan buena como sus puños y rápidamente llegó a ser el primero de la escuela. El Director y el tío Ayscough estuvieron de acuerdo en que Newton debía ser enviado a Cambridge; pero el día decisivo fue fijado cuando Ayscough sorprendió a su sobrino leyendo bajo un seto, cuando lo suponía ayudando a los mozos de la granja.
    Mientras estuvo en la Grammar School de Grantham y luego, mientras se preparaba para ir a Cambridge, Newton se alojó en la casa de Mr. Clarke el boticario de la aldea. En la trastienda de la botica Newton encontró algunos libros viejos que rápidamente devoró. Durante su permanencia en la botica se enamoró de la hijastra de Clarke, Miss Storey, con la que se prometió antes de dejar Woolsthorpe para ir a Cambridge en junio de 1661, a la edad de 19 años. Pero aunque Newton conservó un cálido afecto para su primera y única Dulcinea de toda su vida, la ausencia y su creciente ensimismamiento en su obra, dieron lugar a que la novela fuera borrándose y Newton jamás contrajo matrimonio. Miss Storey fue más tarde Mrs. Vincent.
    Antes de seguir la carrera de Newton en el Trinity College será bueno recordar brevemente la Inglaterra de su época y algunos de los conocimientos científicos de los cuales el joven se sentía heredero. Los fanáticos escoceses Estuardos, gobernaban Inglaterra en virtud de los derechos divinos de que se suponían investidos, con el raro resultado de que los simples seres humanos se sintieron ofendidos por la suposición de la autoridad celestial y se revelaron contra la sublime arrogancia, la estupidez y la incompetencia de sus gobernantes. Newton creció en una atmósfera de guerra civil política y religiosa en la que puritanos y realistas por igual, se dedicaban al saqueo siempre que necesitaban mantener sus ejércitos preparados para la lucha. Carlos I (nacido en 1600, decapitado en 1649), hizo todo lo que estaba en su poder para suprimir el Parlamento; pero a pesar de sus crueles extorsiones y de la villana capacidad de su Star Chamber (tribunal criminal) para pervertir la ley y la justicia común, no era comparable a los hoscos puritanos de Oliver Cromwell, quien, a su vez, quería llevar sus trapacerías hasta el Parlamento con una apelación a la divina Justicia de su sagrada causa.
    Toda esta brutalidad e hipocresía tuvieron un efecto saludable sobre el carácter del joven Newton, que creció con un fiero odio a la tiranía, el subterfugio y la opresión, y cuando el rey Jacobo quiso inmiscuirse en los asuntos de la Universidad, el matemático y filósofo natural no necesitó aprender que una posición resuelta y un frente unido por parte de aquellos cuyas libertades estaban en peligro, son la defensa más eficaz contra una coalición de políticos no escrupulosos; él ya lo sabía por observación y por instinto.

  • El refrán "Aprendiz de todos los oficios, maestro de ninguno" tiene sus excepciones particulares, como cualquier otro proverbio, y Gottfried Wilhelm Leibniz (1646-1716) es una de ellas. La Matemática fue uno de los muchos campos en que Leibniz demostró su extraordinario genio.
    Las leyes, la religión, la política, la historia, la literatura, la lógica, la metafísica y la filosofía especulativa le deben también contribuciones, y cualquiera de ellas le habría asegurado fama y perpetuado su memoria. La frase "genio universal" puede aplicarse a Leibniz, cosa que no puede hacerse con Newton, su rival en Matemática, e infinitamente superior en filosofía natural.
    Hasta en la Matemática la universalidad de Leibniz contrasta con la dirección no desviada de Newton hacia un único fin, el de aplicar el razonamiento matemático a los fenómenos del universo físico. Newton imaginó una cosa de absoluta primera magnitud en Matemática; Leibniz, dos. La primera de ellas fue el Cálculo; la segunda, el Análisis combinatorio. El Cálculo es el lenguaje natural de lo continuo; el Análisis combinatorio es para lo discontinuo (véase capítulo I), lo que el Cálculo es para lo continuo. En el análisis combinatorio nos enfrentamos con un conjunto de cosas diferentes, cada una de las cuales tiene una individualidad por sí misma, y en la situación más general nos preguntamos cuáles son las relaciones, si las hay, que subsisten entre esos individuos completamente heterogéneos. Aquí no observamos sencillas semejanzas de nuestra población matemática, sino aquello que los individuos, como individuos, tienen de común, sin duda no mucho. En efecto, parece, que, en último término, todo lo que podemos decir combinatoriamente se reduce a una cuestión de enumerar los individuos en diferentes formas y comparar los resultados. Parece un milagro que este procedimiento, al parecer, abstracto y sencillo, conduzca a alguna cosa de importancia, pero así es en efecto. Leibniz fue un precursor en este campo, y uno de los primeros en percibir que la anatomía de la lógica, "las leyes del pensamiento", es una cuestión de Análisis combinatorio. En nuestros días todo el tema está siendo aritmetizado.
    En Newton el espíritu matemático de su época tomó forma y sustancia definidas. Era inevitable después de los trabajos de Cavalieri (1598-1647), Fermat (1601-1665), Wallis (1616-1703), Barrow (16301677), y otros autores que el Cálculo infinitesimal surgiera por sí mismo, como una disciplina autónoma. De igual modo que un cristal al caer en una solución saturada en el instante crítico, Newton solidificó las ideas suspendidas en el ambiente de su época, y el Cálculo tomó forma definida. Cualquier mente de primera categoría podría servir de cristal. Leibniz era también una mente de primera categoría, y también cristalizó el Cálculo. Pero Leibniz fue más que un factor para la expresión del espíritu de su época, que Newton, en la Matemática, no fue.
    En su sueño de una "característica universal", Leibniz se anticipó en dos siglos a su época en lo que se refiere a la Matemática y la Lógica. Pero, según se desprende de la investigación, Leibniz estuvo sólo en su segundo gran sueño matemático.
    La unión en una mente de la más elevada capacidad en los dos amplios dominios antitéticos del pensamiento matemático, el analítico y el combinatorio, o lo continuo y lo discontinuo, carece de precedentes antes de Leibniz y tampoco tiene sucesores. Es el único hombre en la historia de la Matemática que ha tenido ambas cualidades de pensamiento en un grado superlativo. Su faceta combinatorial se refleja ya en la obra de sus sucesores alemanes, rica en cuestiones superficiales, pero sólo en el siglo XX, cuando la obra de Whitehead y Russell, continuación de la de Boole en el siglo XIX, realizó en parte el sueño de Leibniz de un razonamiento simbólico universal, adquirió la faceta combinatorial de la Matemática la suprema importancia para el pensamiento matemático y científico que Leibniz había predicho. En la actualidad el método combinatorio de Leibniz, desarrollado en la Lógica simbólica y en sus derivaciones, es tan importante para el Análisis que él y Newton iniciaron hacia su actual complejidad como lo es el Análisis mismo. El método simbólico ofrece la única posibilidad de desligar al Análisis matemático de las paradojas y antinomias que habían infestado sus fundamentos desde Zenón.
    El análisis combinatorio ya ha sido mencionado al ocupamos de la obra de Fermat y de Pascal, respecto a la teoría matemática de la probabilidad. Esto, sin embargo, es sólo un detalle en la "característica universal" que Leibniz abrigaba en su mente, y hacia la cual, como veremos, dio un considerable paso. Pero el desarrollo y aplicaciones del Cálculo ofrecía una atracción irresistible para los matemáticos del siglo XVIII, y el programa de Leibniz no fue considerado seriamente hasta 1840. Después fue nuevamente olvidado, salvo por algunos disidentes de la moda matemática, hasta llegar el año 1910, cuando el movimiento moderno en el razonamiento simbólico dio lugar a otros Principia, los Principia Mathematica de Whitehead y Russell.
    Desde 1910 el programa de Leibniz despertó gran interés entre los matemáticos modernos. Por un curioso tipo de "repetición eterna", la teoría de probabilidades, donde aparece por primera vez el análisis combinatorio en sentido restringido (aplicado por Pascal, Fermat y sus sucesores), se presenta luego en el programa de Leibniz de la revisión fundamental de los conceptos básicos de la probabilidad, que la experiencia, en parte en la nueva mecánica de los cuantos, ha demostrado que son aceptables. En la actualidad, la teoría de probabilidades está en vías de llegar a ser una comarca en el reino de la lógica simbólica "combinatoria" en el amplio sentido de Leibniz.
    El papel que Leibniz desempeñó en la creación del Cálculo fue ya expuesto en el capítulo anterior, donde también se relata la desastrosa controversia a que dio lugar. Largo tiempo después Newton y Leibniz murieron y fueron enterrados. (Newton en la Abadía de Westminster, donde es reverenciado por todos los pueblos de habla inglesa; Leibniz, indiferentemente olvidado por su propio pueblo, en una olvidada sepultura donde sólo los sepultureros y su propio secretario oyeron el ruido de la tierra al caer sobre el ataúd).
    Leibniz no completó su gran proyecto de reducir todo razonamiento exacto a una técnica simbólica, cosa que todavía no se ha logrado; pero lo imaginó y dio un paso significativo. La servidumbre a las costumbres de su época de obtener honores inútiles y más dinero del necesario, la universalidad de su mente y las agotadoras controversias, mantenidas durante sus últimos años, militaron contra la creación de una obra maestra, como la que Newton realizó en sus Principia.
    En el breve resumen acerca de lo que Leibniz realizó de sus múltiples actividades y de su inquieta curiosidad vemos la tragedia de la frustración, que ha marchitado prematuramente más de un talento matemático de primer orden: Newton, persiguiendo una estimación popular de la que no tenía necesidad, y Gauss, separado de su gran obra por la necesidad de llamar la atención de hombres que eran intelectualmente inferiores. De todos los grandes matemáticos, solamente Arquímedes no fue arrastrado a otras actividades. Él fue el único que nació dentro de una clase social a la que otros se esforzaron por elevarse; Newton, cruda y directamente, Gauss indirectamente, y sin duda inconscientemente, buscando la aprobación de hombres de reputación establecida y socialmente reconocidos, aunque él era el hombre más sencillo entre los sencillos.

  •     Desde que la gran depresión comenzó a derrumbar la civilización occidental, los eugenistas, los genetistas, los psicólogos, los políticos, y los dictadores, por muy diferentes razones, han prestado renovado interés en la controversia aun no resuelta, de la herencia frente al medio. En un extremo, el cien por cien de los proletarios mantiene que cualquiera puede ser genio si se le da la oportunidad, mientras el otro extremo, los tories, afirman que el genio es innato y que puede darse en los bajos fondos de Londres. Entre los dos extremos existen todos los matices de pensamiento. La opinión media mantiene que la naturaleza, y no la educación, es el factor dominante para que surja el genio, pero sin una asistencia deliberada o accidental el genio perece.
    La historia de la Matemática ofrece abundante material para un estudio de este interesante problema. Sin tomar partido, hacerlo así actualmente sería prematuro, podemos decir que la prueba proporcionada por la vida de los matemáticos parece estar en favor de la opinión mencionada.
    Probablemente el caso más notable es el de la familia Bernoulli, que en tres generaciones produjo ocho matemáticos, varios de ellos sobresalientes, que a su vez dieron lugar a numerosos descendientes, de los cuales la mitad eran hombres de talento superior al tipo medio, y casi todos ellos, hasta el presente, han sido individuos superiores. No menos de 120 miembros entre los descendientes de los matemáticos Bernoulli han sido seguidos genealógicamente, y de esta considerable descendencia la mayoría alcanzó posición distinguida, algunas veces eminente, en las leyes, rofesorado, ciencia, literatura, administración y artes. Ninguno fracasó. El hecho más significativo observado en numerosos miembros matemáticos de esta familia de la segunda y tercera generación es que no eligieron deliberadamente la Matemática como una profesión, sino que se vieron atraídos hacia ella a pesar de sí mismos, como un dipsómano vuelve al alcohol. Como la familia Bernoulli desempeñó un papel esencial en el desarrollo del Cálculo y de sus aplicaciones en los siglos XVII y XVIII, merece algo más que una rápida mención, aunque este libro sea simplemente una breve exposición de la evolución de la Matemática moderna. Los Bernoulli y Euler fueron, en efecto, los matemáticos que perfeccionaron el Cálculo hasta el punto de que un hombre común puede utilizarlo para obtener resultados a que no podrían llegar los más famosossabios griegos. Pero el volumen de la labor de la familia Bernoulli es demasiado grande para que pueda hacerse una descripción detallada, en una obra como esta, y por ello nos ocuparemos de estos matemáticos conjuntamente.

    Los Bernoulli fueron una de las muchas familias protestantes que huyeron de Amberes en 1583 para escapar de la matanza de los católicos (como en las vísperas de San Bartolomé) en su prolongada persecución de los hugonotes. La familia buscó primeramente refugio en Francfort, y luego pasó a Suiza estableciéndose en Basilea. El fundador de la dinastía Bernoulli se casó con una mujer perteneciente a una de las más antiguas familias de Basilea, y fue un gran comerciante.
    Nicolaus senior, que encabeza el árbol genealógico, fue también un gran comerciante, como lo habían sido su abuelo y su bisabuelo. Todos estos hombres se casaron con hijas de comerciantes, y salvo una excepción, el bisabuelo mencionado,  acumularon grandes fortunas. La excepción muestra la primera desviación de la tradición familiar por el comercio, al seguir la profesión de medicina. El talento matemático estuvo probablemente latente durante generaciones en esta astuta familia de comerciantes y surgió de un modo explosivo.
    Refiriéndonos ahora al árbol genealógico haremos un breve resumen de las principales
    actividades científicas de los ocho matemáticos descendientes de continuar con la herencia.
    Jacob I estudió por sí mismo la forma del Cálculo ideada por Leibniz. Desde 1687 hasta su muerte fue profesor de Matemáticas en Basilea. Jacob I fue uno de los primeros en desarrollar el Cálculo más allá del estado en que lo dejaron Newton y Leibniz y en aplicarlo a nuevos problemas difíciles e importantes. Sus contribuciones a la Geometría analítica a la teoría de probabilidades y al cálculo de variaciones, fueron de extraordinaria importancia. Como hemos de mencionar repetidamente este último (en la obra de Euler, Lagrange, y Hamilton) será útil describir la naturaleza de algunos de los problemas abordados por Tenemos ya una muestra del tipo del problema tratado por el cálculo de variaciones en el teorema de Fermat sobre el tiempo mínimo.

  •   "Euler calculaba sin aparente esfuerzo como los hombres respiran o las águilas se sostienen en el aire" (como dijo Arago), y esta frase no es una exageración de la inigualada facilidad matemática de Léonard Euler, el matemático más prolífico de la historia y el hombre a quien sus contemporáneos llamaron, "la encarnación del Análisis". Euler escribía sus grandes trabajos matemáticos con la facilidad con que un escritor fluido escribe una carta a un amigo íntimo. Ni siquiera la ceguera total, que le afligió en los últimos 17 años de su vida, modificó esta fecundidad sin paralelo. En efecto, parece que la pérdida de la visión agudizó las percepciones de Euler en el mundo interno de su imaginación.
    La extensión de los trabajos de Euler no ha sido exactamente conocida hasta 1936, pero se calcula que serían necesarios sesenta a ochenta grandes volúmenes en cuarto para la publicación de todos sus trabajos. En 1909, la Asociación Suiza de Ciencias Naturales emprendió la publicación de los diversos trabajos de Euler, con la colaboración económica de muchas personas y de sociedades matemáticas de todo el mundo, ya que Euler pertenece a todo el mundo civilizado y no solo a Suiza. El cálculo de los probables gastos (alrededor de 80.000 dólares en la moneda de 1909), tuvo que modificarse por el descubrimiento de numerosos e insospechados manuscritos de Euler, realizado en San Petersburgo (Leningrado).
    La carrera matemática de Euler comienza el año de la muerte de Newton, no podía elegirse una época más propicia para un genio como el de Euler. La Geometría analítica (que se hizo pública en el año 1637) llevaba en uso 90 años, el Cálculo alrededor de 50, y la ley de la gravitación universal de Newton, la clave de la astronomía física había sido presentada al público matemático hacía 40 años. En cada uno de estos campos había sido resuelto un vasto número de problemas aislados, habiéndose hecho ciertos ensayos de unificación, pero no existía ningún estudio sistemático que abarcara todo el complejo de las Matemáticas puras y aplicadas. En particular, los poderosos métodos analíticos de Descartes, Newton y Leibniz no habían sido aún explotados hasta el límite de lo posible, especialmente en mecánica y Geometría.
    El álgebra y la Trigonometría, en un nivel inferior, podían ser ahora objeto de una sistematización y ampliación, especialmente la última. En el dominio de Fermat del análisis diofántico y de las propiedades de los números enteros comunes no era posible, ni todavía lo es, esa "perfección temporal"; pero también aquí Euler demostró ser maestro. En efecto, una de las características más notables del genio universal de Euler, fue sin igual competencia en las principales direcciones de la Matemática, la continua y la discontinua.
    Como algorista, Euler jamás ha sido sobrepasado y probablemente no hay quien se le aproxime, como no sea Jacobi. Un algorista es un matemático que idea "algoritmos" (o "algorismos") para la solución de problemas de tipos especiales. Como un ejemplo muy sencillo aceptamos (o probamos) que todo número real positivo tiene una raíz cuadrada real. ¿Cómo será calculada la raíz? Se conocen varios métodos; un algorista idea métodos practicables. Además, en el análisis diofántico, y también en el Cálculo integral, la solución de un problema puede no ser hallada hasta que haya sido hecha alguna ingeniosa (muchas veces simple) sustitución de una o más de las variables por funciones de otras variables; un algorista es un matemático al que se le ocurren de un modo natural esos ingeniosos trucos.
    No existe un modo uniforme de proceder; los algoristas, como los versificadores fáciles, nacen, no se hacen.
    Actualmente es moda despreciar a los "simples algoristas"; sin embargo, cuando un verdadero gran algorista, como el hindú Ramanuan, surge inesperadamente, hasta los analistas expertos le consideran como un don del cielo: su visión sobrenatural respecto a fórmulas al parecer no relacionadas, revela sendas ocultas que conducen desde un territorio a otro y los analistas encuentran nuevas tareas al ser abiertos nuevos campos. Una algorista es "un formalista" que ama las fórmulas bellas por sí mismas.
    Antes de continuar con la pacífica pero interesante vida de Euler, debemos mencionar dos circunstancias de su época que fomentaron su prodigiosa actividad y le ayudaron a darle una dirección.
    En el siglo XVIII las Universidades no eran los centros principales de investigación en Europa. Pudieron hacer mucho más de lo que hicieron de no haber sido por su tradición clásica y su incomprensible hostilidad hacia la ciencia. La Matemática, por no ser suficientemente antigua, era considerada respetable, pero la física, más reciente, era sospechosa. Además, un matemático en una Universidad de la época tenía que emplear gran parte de su esfuerzo en la enseñanza elemental; sus investigaciones, si las hacía, constituían un lujo no aprovechable, precisamente como en el tipo medio de las actuales
    instituciones americanas de enseñanza superior. Los miembros de las Universidades británicas podían hacer lo que quisieran. Pocos, sin embargo, querían hacer algo, y lo que hacían o dejaban de hacer no afectaba a su forma de vivir. En ese estado de laxitud o de abierta hostilidad, no había razón para que las Universidades condujeran a la ciencia, y realmente no la conducían.
    Este papel era desempeñado por las diversas Academias reales mantenidas por gobernantes generosos y de gran visión. Los matemáticos deben una extraordinaria gratitud a Federico el Grande de Prusia y a Catalina la Grande de Rusia por su gran liberalidad. Hicieron posible todo un siglo de progresos matemáticos en uno de los períodos más activos de la historia científica. En el caso de Euler, Berlín y San Petersburgo constituyen el nervio de la creación matemática. Estos dos focos creadores fueron inspirados por la inquieta ambición de Leibniz. Las Academias trazadas siguiendo los planes de Leibniz dieron a Euler la ocasión de ser el matemático más prolífico de todos los tiempos; así, en cierto sentido, Euler fue el nieto de Leibniz La Academia en Berlín se había ido marchitando durante cuarenta años cuando Euler, inspirado por Federico el Grande, le dio nueva vida; y la Academia de San Petersburgo, que Pedro el Grande no llegó a organizar de acuerdo con el programa de Leibniz, quedó firmemente fundada por su sucesor.
    Estas Academias no eran comparables a las actuales, cuya principal función es premiar con el nombramiento de académico a aquellos individuos que se distinguen por la obra realizada. Eran organizaciones que pagaban a sus miembros principales para que se dedicaran a la investigación científica. Los sueldos y otros gajes eran lo suficientemente elevados para permitir que vivieran con cierta comodidad el académico y su familia. La familia de Euler se componía en cierta época de a lo menos 18 personas, y, sin embargo, le fue posible sostenerla decentemente. Por si esto fuera poco, los hijos de los académicos del siglo XVII, si eran dignos de ello, sabían que gozaban de una fácil iniciación en el mundo.

  • "Lagrange es la inmensa pirámide de la ciencia matemática". Esto era lo que Napoleón Bonaparte decía del más grande y más modesto matemático del siglo XVIII, Joseph Louis Lagrange (1736-1813), a quien nombró Senador, Conde del Imperio y gran Oficial de la Legión de Honor. El rey de Cerdeña y Federico el Grande, también honraron a Lagrange, pero no tan generosamente como el imperial Napoleón.
    Lagrange tenía sangre mixta de francés e italiano, predominando la sangre francesa. Su abuelo, un capitán de caballería francés, entró al servicio de Carlos Manuel II, Rey de Cerdeña, y establecido en Turín emparentó, por matrimonio, con la ilustre familia Conti. El padre de Lagrange, Tesorero de guerra en Cerdeña, casó con María Teresa Gros, la única hija de un rico médico de Cambiano, con quien tuvo once hijos. De su numerosa prole, tan sólo el menor, Joseph Louis, que nació el 25 de enero de 1736,
    llegó a sobrevivir. El padre era rico, tanto por él como por su mujer. Era también un incorregible especulador, y en la época en que su hijo podría haber heredado la fortuna, no quedaba ya nada digno de ser heredado. En su vida ulterior Lagrange consideraba este desastre como el suceso más feliz de su vida: "Si hubiera heredado una fortuna, probablemente no me habría dedicado a la Matemática".
    Lo primero que interesó a Lagrange en sus estudios escolares fueron las lenguas clásicas, y constituyó una casualidad que se desarrollara en él una pasión por la Matemática. Siguiendo sus estudios del griego y del latín pudo familiarizarse con los trabajos geométricos de Euclides y Arquímedes, que no parece le impresionaron  randemente. Más tarde, un ensayo de Halley (amigo de Newton), ensalzando la superioridad del Cálculo sobre los métodos geométricos sintéticos de los griegos cayó en las manos del joven Lagrange. Quedó cautivado y convencido. En muy poco tiempo llegó a dominar, sin necesidad de maestro, lo que entonces constituía el Análisis moderno. A los 16 años (según Delambre puede haber aquí una ligera inexactitud), Lagrange fue nombrado profesor de Matemática en la Real Escuela de Artillería de Turín. Entonces comenzó una de las más brillantes carreras en la historia de la  matemática.
    Desde el principio Lagrange fue un analista, jamás un geómetra. En él vemos el primer ejemplo notable de esa especialización que viene a constituir casi una necesidad en la investigación matemática. Las preferencias analíticas de Lagrange se manifiestan notablemente en su obra maestra, la Mécanique analytique, que proyectó en Turín cuando tenía 19 años, pero que fue publicada en París en el año 1788, cuando Lagrange tenía 52. "En esta obra no se encontrará ninguna figura", dice en el prefacio.
    Pero con un semihumorístico sacrificio a los dioses de la Geometría hace notar que la ciencia de la mecánica puede ser considerada como la Geometría de un espacio de cuatro dimensiones, tres coordenadas cartesianas con una coordenada del tiempo son suficientes para localizar una partícula en movimiento en el espacio y en el tiempo, una forma de considerar la mecánica que se ha hecho popular desde 1915, cuando Einstein la explotó en su relatividad general.
    El estudio analítico de la mecánica hecho por Lagrange marca la primera ruptura completa con la tradición griega. Newton, sus contemporáneos y sus inmediatos sucesores consideraron útiles las figuras en sus estudios de los problemas mecánicos; Lagrange mostró que mayor flexibilidad y una fuerza incomparablemente mayor se alcanzan cuando se emplean desde el principio métodos analíticos generales.
    En Turín, el joven profesor explicaba a estudiantes de mayor edad que él. Por entonces organizó una sociedad de investigaciones de la cual habría de nacer la Academia de Ciencias de Turín. El primer volumen de las memorias de la Academia fue publicado en 1759, cuando Lagrange tenía 23 años. Suele decirse que el modesto Lagrange fue en realidad el autor de muchos trabajos matemáticos que otros autores se apropiaron. Un trabajo publicado por Foncenex era tan bueno que el Rey de Cerdeña encargó al supuesto autor del Ministerio de Marina. Los historiadores de la Matemática se han sorprendido algunas veces de que Foncenex jamás estuvo a la altura de su primer triunfo matemático.
    Lagrange publicó una memoria sobre máximos y mínimos (el cálculo de variaciones explicado en los capítulos IV y VII) en la que promete tratar el tema en una forma de la cual deducirá toda la mecánica, tanto de sólidos como de fluidos. Así, a los 23 años, realmente antes, Lagrange imaginó su obra maestra, la Mécanique analytique, que es para la mecánica en general lo que la ley de la gravitación universal es para la mecánica celeste. Escribiendo, diez años más tarde, al matemático francés D'Alembert (1717-1783), Lagrange dice que considera esa primera obra, el cálculo de variaciones, elaborada cuando tenía 19 años, como su obra maestra. Por medio de este cálculo Lagrange unificó la mecánica, y como Hamilton dice, hizo de ella "una especie de poema científico".
    Cuando se comprende, el método de Lagrange es casi una perogrullada. Como algunos han notado, las ecuaciones de Lagrange que dominan la mecánica son el mejor ejemplo del arte de hacer alguna cosa de la nada. Pero si reflexionamos un momento, veremos que cualquier principio científico capaz de unir todo un vasto universo de fenómenos debe ser sencillo: sólo un principio de máxima simplicidad puede dominar una multitud de diversos problemas que hasta después de una inspección detenida parecen ser individuales y diferentes.

  • El marqués Pierre-Simon de Laplace (1749-1827) no había nacido campesino ni tampoco murió como un esnob.  Sin embargo, salvo pequeños detalles de segundo orden, su ilustre carrera queda comprendida dentro de los límites indicados, y desde este punto de vista posee su máximo interés como un ejemplar de la humanidad.
    Como astrónomo matemático Laplace ha sido justamente llamado el Newton de Francia; como matemático puede ser considerado como, el fundador de la fase moderna del Cálculo de probabilidades.  Por lo que se refiere al lado humano, es quizá la más notable refutación de la superstición pedagógica de que las nobles empresas ennoblecen necesariamente el carácter de un hombre.  Sin embargo, a pesar de todos sus puntos flacos, su ansia por los títulos, su flexibilidad política y su deseo de brillar en el foco constantemente cambiante de la estimación pública, Laplace tiene en su carácter elementos de verdadera grandeza.  No podemos creer todo lo que dijo acerca de su abnegada devoción por la verdad en bien de la verdad, y podemos sonreír ante la afectación con que pronunció sus sentenciosas y últimas palabras. "Lo que sabemos no es mucho; lo que ignoramos es inmenso", en un esfuerzo por recoger en un bello epigrama las palabras de Newton referentes al niño que juega en la playa, pero no podemos negar que Laplace, en su generosidad con los desconocidos principiantes, no era otra cosa que un político tornadizo e ingrato. Por echar una mano a un joven,  Laplace una vez se traicionó a sí mismo.
    Poco es lo que sabemos de los primeros años de Laplace.  Sus padres eran campesinos que vivían enBeaumont-en-Aug e, Departamento de Calvados, Francia, donde Pierre-Simon nació el 23 de marzo de 1749. La oscuridad que envuelve la infancia y juventud de Laplace es debida a su propio snobismo: estaba avergonzado de sus humildes padres e hizo todo lo posible para ocultar su origen campesino.
    Laplace tuvo la posibilidad de triunfar gracias al interés de vecinos poderosos, que posiblemente oyeron hablar de su notable talento que le destacaba en la aldea.  Se dice que sus primeros triunfos tuvieron lugar en las discusiones teológicas.  Si esto es cierto, constituye un interesante preludio al ateísmo algo agresivo de su madurez.  Se dedicó precozmente a la Matemática.  Existía una Academia militar en Beaumont, a la que asistió Laplace como externo, y en la cual se dice que enseñó Matemática durante cierto tiempo.  Una dudosa leyenda afirma que la memoria prodigiosa del joven atrajo más atención que su capacidad matemática, y fue la causa de las entusiastas recomendaciones que llevó a París cuando, teniendo 18 años, sacudió de sus zapatos el polvo de Beaumont para salir en busca de fortuna.
    Consideraba en mucho su capacidad, pero quizá esa estimación no era excesiva.  Con justificada auto confianza, el joven Laplace llegó a París para conquistar el mundo matemático.
    Llegado a París, Laplace quiso visitar a D'Alembert para presentarle las recomendaciones de que era portador.  No fue recibido.  D'Alembert no se interesaba por los jóvenes que sólo llegaban recomendados por gentes eminentes.  Con una notable visión, extraordinaria para un joven, Laplace se dio cuenta de la causa.  Volvió a su hospedaje y escribió a D'Alembert una maravillosa carta sobre los principios generales de la Mecánica.  Había puesto el dedo en la llaga.  En su contestación invitando a Laplace a que le visitara, D'Alembert escribía: "Señor, veréis que he prestado poca atención a vuestras recomendaciones; no las necesitáis, vuestra propia presentación ha sido lo mejor.  Es suficiente para mí.
    Mi apoyo es debido a ella".  Pocos días más tarde, gracias a D'Alembert, Laplace fue nombrado profesor de matemática en la Escuela Militar de París.
    Laplace pudo ahora entregarse a la obra de su vida, la aplicación detallada de las leyes de la gravitación de Newton a todo el sistema solar.  Si no se hubiera dedicado a otra cosa podría haber sido más grande de lo que fue.  Laplace describe cómo le gastaría ser, en una carta dirigida a D'Alembert en 1777, cuando tenía 27 años.  La descripción que Laplace hace de sí mismo es una de las más extrañas mezclas de verdad y fantasía que un hombre puede haber realizado siguiendo el auto análisis.
    "Siempre he cultivado la Matemática por gusto, más que por deseo de vana reputación, declara.  Mi mayor diversión ha sido estudiar la vida de los inventores para comprender su genio y ver los obstáculos con que han tropezado y cómo los han vencido.  Entonces me coloco en su lugar y me pregunto cómo hubiera procedido yo para vencer esos mismos obstáculos, y aunque esta sustitución, en la gran mayoría de los casos ha sido humillante para mi amor propio, el placer de regocijarme en sus triunfos ha sido una, amplia reparación de esta pequeña humillación.  Si soy suficientemente afortunado para añadir algo a sus obras, atribuyo todo el mérito a sus primeros esfuerzos, persuadido de que en mi posición ellos habrían ido mucho más lejos que yo...”

  • Las carreras de Gaspard Monge (1746-1818), y de Joseph Fourier (1768-1830) tienen un paralelo muy curioso y pueden ser consideradas conjuntamente. Desde el punto de vista matemático cada uno de ellos hizo una contribución fundamental: Monge inventó la Geometría descriptiva (que no debe ser confundida con la Geometría proyectiva de Desargues, Pascal y otros); Fourier inició la fase actual de la física matemática con sus clásicas investigaciones sobre la teoría de la conducción del calor.
    Sin la Geometría de Monge, inventada al principio para ser usada en la ingeniería militar- todo el desarrollo de la maquinaria en el siglo XIX, quizá hubiera sido imposible. La Geometría descriptiva es la base de todos los dibujos de la mecánica y procedimientos gráficos que ayudan para llevar a la práctica la Ingeniería.
    Los métodos iniciados por Fourier en su trabajo sobre la conducción del calor son de análoga importancia en los problemas del valor-límite, tronco de la física matemática. Monge y Fourier, son pues, los responsables de una parte considerable de nuestra civilización. Monge desde el punto de vista práctico e industrial; Fourier desde el punto de vista científico. Pero hasta en la faceta práctica, los métodos de Fourier son actualmente indispensables, pues se emplean corrientemente en toda la ingeniería eléctrica y acústica (incluyendo la radiotelefonía) Por ser superiores a las reglas empíricas y métodos similares.
    Debe ser recordado un tercer hombre, aunque no tengamos espacio para referir su vida: el químico Count Claude-Louis Berthollet (1748-1822), íntimo amigo de Monge, Laplace, Lavoisier y Napoleón.
    Con Lavoisier, Berthollet es considerado como uno de los fundadores de la química moderna. Él y Monge estaban tan unidos, que sus admiradores, cuando no se trataba de los trabajos científicos, no se molestaban en distinguirlos, y les llamaban simplemente Monge-Berthollet.
    Gaspard Monge nació el 10 de mayo de 1746, en Beaune, Francia, siendo hijo de Jacques Monge, un afilador ambulante, que tenía un enorme respeto por la educación, y que envió a sus tres hijos a un colegio local. Los tres hijos fueron estudiantes distinguidos, pero Gaspard fue el genio de la familia. En el colegio (regido por una orden religiosa) Gaspard obtuvo regularmente el primer premio en todas las materias logrando la máxima distinción de ver inscrita después de su nombre, la calificación "puer aureus".
    A la edad de 14 años, la peculiar combinación de los talentos de Monge le permitió construir una máquina de bomberos. "¿Cómo puedes haber emprendido esta obra, sin una guía o un modelo para realizarlo?" le preguntron algunos asombrados admiradores. La contestación de Monge permite comprender la faceta matemática de su carrera y gran parte de sus otras facetas. "Tengo dos métodos infalibles de triunfar. Una invencible tenacidad y dedos para trasladar mi pensamiento con fidelidad geométrica". Era en efecto un geómetra y un ingeniero innato con un don insuperable para representar mentalmente las complicadas relaciones del espacio.
    Teniendo 16 años preparó por su propia iniciativa un maravilloso plano de Beaune, construyendo por sí mismo los instrumentos necesarios para este fin. Este plano fue el que abrió su camino.
    Impresionados por su indudable inteligencia, los maestros de Monge le recomendaron para profesor de física en el Colegio de Lyon regido por su orden. Monge fue nombrado teniendo 16 años. Su afabilidad, paciencia y falta de afectación, aparte de sus sólidos conocimientos, hicieron de él un gran maestro. La
    orden le pidió que tomara sus votos para unir su vida a las de ellos. Monge consultó a su padre. El astuto afilador le recomendó prudencia.
    Algunos días más tarde, al volver a su hogar, Monge conoció a un oficial de Ingenieros que había visto el famoso plano. El oficial solicitó de Jacques que enviara a su hijo a la Escuela militar de Méziêres. Por fortuna para la futura carrera de Monge el oficial no llegó a decir que, dado su humilde origen, jamás podría desempeñar un cargo. No sabiendo esto, Monge aceptó con gusto y marchó a Méziêres.
    Monge supo pronto que es lo que le esperaba en Méziêres. Había únicamente veinte alumnos en la escuela, de los cuales se graduaban diez cada año como oficiales de ingenieros. El resto estaba destinado a los trabajos "prácticos", a las tareas secundarias. Monge no se quejó. Más bien estaba contento de que el trabajo rutinario de dibujar y trazar los planos le dejara tiempo para su Matemática.
    Una parte importante del curso se refería a la teoría de las fortificaciones, y los problemas planteados eran preparar las obras para que ninguna porción de ellas estuviera expuesta al fuego directo del enemigo. Los cálculos usuales exigían operaciones aritméticas interminables. Un día Monge trabajaba en la solución de un problema de este tipo, e inmediatamente lo entregó al oficial superior para que lo comprobase.

  • Más de una vez, durante la primera Gran Guerra, cuando las tropas francesas eran atacadas y no existía la posibilidad de reforzarlas, el alto mando pudo salvar la situación enviando a toda prisa hacia el frente a alguna gran artista, envuelta desde el cuello hasta los pies en la tricolor, para que cantara la Marsellesa ante los hombres agotados.  Cumplido su papel, la artista volvía a París en su automóvil; las tropas fortalecidas avanzaban, y a la mañana siguiente, la prensa, cínicamente censurada, aseguraba al lector que "el día ' de la gloria ha llegado".
    En 1812, el día de gloria estaba aún por venir.  Las grandes artistas no acompañaban al medio millón de soldados de Napoleón Bonaparte en su marcha ' triunfal por el corazón de Rusia.  Eran los hombres los que cantaban a medida que los rusos se retiraban ante el invencible ejército, y en las infinitas llanuras resonaba el vigoroso canto que había derrumbado a los tiranos de sus tronos y elevado a Napoleón al lugar que ocupaba.
    Todo marchaba a pedir de boca y lo mejor que podía imaginar el más entusiasta de aquellos hombres: seis días antes de que Napoleón cruzara el Niemen, su brillante estrategia diplomática exasperó indirectamente al presidente Madison, lanzando a los Estados Unidos, a una guerra contra Inglaterra.  Los rusos se retiraban hacia Moscú con la mayor rapidez, y el Gran Ejército tenía que acelerar su marcha para acercarse al enemigo que huía.  En Borodino los rusos se detuvieron, combatieron y se retiraron.  Napoleón continuó sin oposición, salvo la del terrible clima, hasta Moscú, donde notificó al Zar su voluntad de que las fuerzas rusas debían rendirse incondicionalmente.  Los habitantes de Moscú, dirigidos por su gobierno, prendieron fuego a la ciudad, quemaron hasta la tierra, y Napoleón no encontró otra cosa que vacío y humo.
    Rencoroso, pero aun dueño de la situación, Napoleón no se cuidó del antiguo proverbio, que por segunda o tercera vez se le atravesó en su carrera militar, "Quien a hierro mata a hierro muere".
    Ordenó el retorno por las ahora heladas planicies, para preparar su encuentro con Blücher en Leipzig, dejando al Gran Ejército en la disyuntiva de retirarse o de morir de frío.
    Con el ejército francés abandonado se hallaba un joven oficial de ingenieros, Jean-Victor Poncelet (10 de julio 1788, 23 de diciembre 1867) que, como estudiante de la Escuela Politécnica de París y más tarde en la Academia Militar de Metz, se había inspirado en la nueva Geometría descriptiva de Monge (1746-1818) y en la Géométrie de la position (publicada en 1803) del anciano Carnot (Lazare-Nicolas Marguerite Carnot, 13 de mayo, 1753, 2 de agosto, 1823), cuyo programa revolucionario aunque algo reaccionario había sido ideado para "libertar la Geometría de los jeroglíficos del Análisis”.
    En el prefacio de su clásica obra Applications d'analyse el de géométrie (segunda edición, 1862, de la obra primeramente publicada en 1822), Poncelet refiere sus recuerdos de la desastrosa retirada de Moscú.  El 18 de noviembre de 1812, el agotado resto del ejército francés, dirigido por el mariscal Ney, era vencido en  Krasnoï.  Entre los supuestos muertos abandonados en los helados campos de batalla se hallaba el joven Poncelet. Su uniforme de oficial de ingenieros le salvó la vida. Un destacamento de soldados, al descubrir que aún respiraba, le condujo ante el Estado Mayor ruso para interrogarlo.
    Como prisionero de guerra, el joven oficial tuvo que marchar durante casi cinco meses a través de las llanuras heladas, destrozado su uniforme, y alimentándose con una escasa ración de pan negro. Víctima de un frío tan intenso que con frecuencia congelaba el mercurio del termómetro, muchos de los compañeros de Poncelet murieron en el camino, pero su extraordinario vigor le permitió llegar, en marzo de 1813, a la prisión de Saratoff, en las orillas del Volga. Al principio estaba demasiado agotado para pensar.  Pero cuando "el espléndido sol de abril"', restableció su vitalidad, recordó que había recibido una buena educación matemática, y para suavizar los rigores de su exilio resolvió reproducir lo que pudiera de lo que había aprendido.  Fue así como creó la Geometría proyectiva.

  • Arquímedes, Newton y Gauss son tres hombres que constituyen una clase especial entre los grandes matemáticos y no corresponde a los mortales ordinarios colocarlos en orden a sus méritos.  Los tres iniciaron nuevas oleadas en la Matemática pura y aplicada: Arquímedes estimaba su Matemática pura mucho más que sus aplicaciones; Newton parece haber encontrado la principal justificación para sus invenciones matemáticas en el uso científico que de ellas estableció, mientras Gauss declaraba que para él tenía el mismo valor la parte pura y la aplicada.  De todos modos, Gauss elevó la Aritmética superior a la categoría de reina de la Matemática.
    El origen de Gauss, Príncipe de la Matemática, no era en verdad real. Hijo de padres pobres; había nacido en una miserable casucha en Brunswick, Alemania, el 30 de abril de 1777.  Su abuelo paterno era un pobre campesino.  En 1740 su abuelo se estableció en Brunswick, donde arrastró una precaria existencia dedicado a la jardinería.  El segundo de sus tres hijos, Gerhard Diederich, nacido en 1744, fue el padre de Gauss.  Aparte de este gran honor, la Vida de Gerhard, dedicada los trabajos pesados de jardinero, constructor de canales y albañil, no se distingue por ningún motivo.
    Se dice que el padre de Gauss era un hombre brusco, escrupulosamente honrado, y cuya rudeza para con su hijo algunas veces lindaba en la brutalidad.  Su lenguaje era grosero y su mano pesada.  Su honradez y su tenacidad le permitieron cierto grado de comodidades, pero su vida jamás fue fácil.  No es sorprendente que tal hombre hiciera todo lo que estaba en su mano para que su hijo se frustrase, impidiéndole adquirir una educación adecuada a su capacidad.  Si la opinión del padre hubiera prevalecido, el inteligente muchacho habría seguido una de las profesiones familiares, y fue tan sólo una serie de felices incidentes la que salvó a Gauss de ser jardinero o albañil.  Siendo niño era respetuoso y obediente, y aunque jamás criticó a su padre en su vida ulterior, se comprende que jamás sintió por él verdadero cariño.  Gerhard murió el año 1806.
    Por el lado materno Gauss fue en realidad más afortunado.  El padre de Dorothea Benz era picapedrero, y murió teniendo 30 años, de tuberculosis, consecuencia de las condiciones poco higiénicas de su oficio; dejó dos hijos, Dorothea y un hermano menor, Friederich.
    Aquí el origen del genio de Gauss aparece de modo evidente.  Condenado por su miseria económica al oficio de tejedor, Friederich era un hombre muy inteligente y genial, cuyo cerebro agudo e inquieto se nutría en campos muy lejanos de los que le proporcionaban la subsistencia material.  Friederich se hizo pronto una notable reputación como tejedor de los más finos damascos, un arte que aprendió por sí mismo.  Al encontrar en el hijo de su hermana una mente afín a la suya, el inteligente tío Friederich hizo cuanto pudo para despertar la rápida lógica del muchacho mediante sus observaciones atinadas y con su filosofía algo zumbona de la vida.
    Friederich sabía lo que hacía; Gauss en aquella época probablemente no.  Pero Gauss tenía una memoria fotográfica y conservó las impresiones de su infancia de un modo perfecto hasta el día de su muerte.  Siendo ya adulto recordaba lo que Friederich había hecho por él, y pensaba que con la muerte prematura de aquel hombre "se había perdido un genio innato".
    Dorothea se trasladó a Brunswick en 1769.  Teniendo 34 años (1776) contrajo matrimonio.  El año siguiente nació su hijo, cuyo nombre bautismal era Johann Friederich Carl Gauss.  En su vida posterior firmó sus obras maestras con el nombre Carl Friederich Gauss. Si un gran genio se perdió en Friederich Benz, su nombre sobrevivió en su sobrino.
    La madre de Gauss era una mujer recta, de gran carácter, de inteligencia aguda y humor alegre.  Su hijo constituyó su orgullo desde el día de su nacimiento hasta que ella murió, teniendo 97 años.  Cuando el "niño prodigio" tenía dos años asombraba por su extraordinaria inteligencia, que no parecía terrenal, y esa inteligencia mantuvo y hasta superó, al llegar a la pubertad, las promesas de su infancia.  Dándose cuenta de ello, Dorothea Gauss defendió al muchacho frente a la obstinación de su marido, que quería mantener a su hijo tan ignorante como él era.
    Dorothea esperaba grandes cosas de su hijo.  Quizá dudó en alguna ocasión de que su sueño se realizara, como lo demuestran sus preguntas a quien estaba en posición de juzgar el talento de su vástago.  Así, cuando Gauss tenía 19 años, la madre preguntó a su amigo el matemático Wolfgang Bolyai, si Gauss llegaría a ser algo. . Cuando Bolyai exclamó "¡Será el más grande matemático de Europa!", ella rompió en lágrimas.
    Los últimos 22 años de su vida transcurrieron en la casa de su hijo y durante los últimos cuatro, estaba totalmente ciega.  A Gauss poco le importaba la fama, pero sus triunfos constituían la vida de la madre Entre ellos existió siempre la más completa comprensión, y Gauss pagó su valerosa protección de sus primeros años procurándoles una vejez tranquila.
    Cuando quedó ciega, su hijo no permitió que la cuidara otra persona que no fuera él, y sus cuidados se prolongaron hasta su última y larga enfermedad.  Murió el 19 de abril de 1839.
    De los muchos accidentes que pudieron haber privado a la Matemática de hombres como Arquímedes y Newton, también Gauss recuerda uno ocurrido en su primera infancia.  Una crecida primaveral llenó el canal que rodeaba la casucha de la familia, inundando el terreno.  Gauss que jugaba cerca del agua casi se ahogó.  Pero por feliz casualidad un labrador pudo impedir que su vida terminara allí.
    En toda la historia de la Matemática no hay nada que se acerque a la precocidad demostrada por Gauss.  Se ignora el momento en que Arquímedes comenzó a dar muestras de su genio, y las precoces manifestaciones del talento matemático de Newton pasaron inadvertidas.  Aunque parezca increíble, Gauss demostró lo que era antes de cumplir los tres años.
    Un sábado, Gerhard Gauss estaba echando sus cuentas para pagar a los trabajadores que se hallaban a su cargo, sin darse cuenta de que su hijito seguía esas cuentas con notable atención.  Terminados sus largos cálculos, Gerhard quedó asombrado al oír que el niño le decía: "La cuenta está mal, debe ser..."
    Al comprobar las operaciones se pudo ver que las cifras encontradas por el pequeño Gauss eran exactas.
    Antes de ésto el niño pudo conocer de sus padres y de los amigos de éstos la pronunciación de las letras del alfabeto y aprendió por sí solo a leer.  Nadie le había hablado de la Aritmética, aunque probablemente comprendió la significación de los dígitos 1, 2... al enumerar el alfabeto.  En su vida posterior le divertía decir que supo contar antes que hablar.  Este prodigioso poder para los cálculos mentales, persistió durante toda su vida.
    Poco después de cumplir siete años Gauss ingresó en la escuela primaria, una verdadera reliquia de la Edad Media, regida por un bárbaro, un tal Büttner, quien para enseñar a un centenar de muchachos que se hallaban a su cargo, les sumergía en un estado de estupidez aterrorizada, en la que hasta olvidaban sus nombres.  En este infierno Gauss encontró su fortuna.
    Nada extraordinario sucedió durante los dos primeros aires.  Al cumplir los 10, Gauss ingresó en la clase de Aritmética.  Como se trataba de las primeras clases, ninguno de los muchachos había oído hablar de una progresión aritmética.  Fácil era al heroico Büttner plantear un largo problema de sumas cuya respuesta podía encontrar en pocos segundos valiéndose de una fórmula.. El problema era del siguiente tipo:  81297 + 81495 + 81693...+ 100899, donde el paso de un número a otro es siempre el mismo (198), debiendo sumarse un cierto número de términos (100).
    La costumbre de la escuela era que el muchacho que primero hallaba la respuesta, colocase su pizarra sobre la mesa, el siguiente colocaba la suya sobre la primera y así sucesivamente.  Büttner acababa de plantear el problema cuando Gauss colocó su pizarra sobre la mesa: "Ya está", dijo "Ligget se", en su dialecto campesino.  Durante toda una hora, mientras los compañeros trabajaban afanosamente, continuó sentado con los brazos cruzados, favorecido de cuando en cuando por una sarcástica mirada de Büttner, quien se imaginaba que el muchachito era un perfecto necio.  Al terminar la clase, Büttner examinó las pizarras.  En la pizarra de Gauss aparecía un solo número.  Cuándo era viejo, a Gauss le gustaba decir que el número que había escrito, constituía la respuesta exacta y que los demás se habían equivocado.  Gauss no conocía la estratagema para realizar esos problemas rápidamente. Es muy sencillo una vez conocido el ardid; pero es extraordinario que un muchacho de 10 años, pudiera descubrirlo instantáneamente.

  • En las primeras tres décadas del siglo XIX la Matemática se transformó repentinamente, siendo muy diferente de lo que había sido en la época heroica post-newtoniana del siglo XVIII. El cambio tuvo lugar en el sentido de exigirse mayor rigor en la demostración, seguido de una generalización sin prcedentes y de una libertad de la inventiva. Algo semejante se ha producido visiblemente en nuestros días, y hay que ser un profeta para aventurarse a predecir lo que será la Matemática dentro de tres cuartos de siglo.
    Al comienzo del siglo XIX sólo Gauss tuvo el barrunto de lo que pronto iba a suceder, pero su reserva newtoniana le impidió complicar a Lagrange, Laplace y Legendre lo que él preveía.
    Aunque los grandes matemáticos franceses vivieron en el primer tercio del siglo XIX, gran parte de su obra parece ahora haber sido preparatoria. Lagrange, en la teoría de ecuaciones, preparó el camino a Abel y Galois, Laplace, con sus trabajos sobre las ecuaciones diferenciales de la astronomía newtoniana, incluyendo la teoría de la gravitación, adivinó el desarrollo fenomenal de la física matemática en el siglo XIX, mientras las investigaciones de Legendre en el Cálculo integral abrieron a Abel y Jacobi, uno de los más fecundos campos de la investigación en Análisis. La mecánica analítica de Lagrange es aun moderna, pero también iba a experimentar magníficas ampliaciones con la obra de Hamilton y Jacobi y más tarde con los trabajos de Poincaré. La obra de Lagrange en el cálculo de variaciones seguirá siendo también clásica y útil,
    pero los trabajos de Weierstrass le dieron una nueva dirección bajo el espíritu riguroso e inventiva de la última mitad del siglo XIX, y esa dirección se ha ampliado y renovado en nuestra época. (Los matemáticos americanos e italianos han tenido una parte esencial en este desarrollo).
    Augustin-Louis Cauchy, el primero de los grandes matemáticos franceses cuyo pensamiento pertenece claramente a la edad moderna, nació en París el 21 de agosto de 1789: poco menos de seis semanas después de la caída de la Bastilla. Hijo de la Revolución, pagó su precio a la libertad y a la igualdad, creciendo en malas condiciones con un cuerpo desnutrido. Gracias a la diplomacia y buen sentido de su padre Cauchy pudo sobrevivir en medio del hambre. Habiendo escapado al Terror, pasó desde la Politécnica al servicio de Napoleón. Después del derrumbe del orden napoleónico, Cauchy sufrió todas las privaciones de las revoluciones y c ontrarrevoluciones, y su obra fue afectada en cierto modo por la intranquilidad social de su tiempo. Si las revoluciones y otros acontecimientos semejantes son capaces de influir sobre la obra científica de un hombre, Cauchy sería un caso que demostrara el hecho. Tuvo una extraordinaria fecundidad para la invención matemática, fecundidad que sólo ha sido superada en dos casos: Euler y Cayley. Su obra, como sus tiempos, fue revolucionaria.
    La Matemática moderna debe a Cauchy dos de sus principales contribuciones, cada una de las cuales marca una separación de la Matemática del siglo XVIII. La primera fue la introducción del rigor en el Análisis matemático. Es difícil encontrar símil adecuado para expresar la magnitud de este progreso, aunque quizá podrá servir el siguiente ejemplo. Supongamos que durante siglos todo un pueblo rindiera culto a falsos dioses, y que repentinamente descubriera su error. Antes de la introducción del rigor, el Análisis matemático era un panteón de falsos dioses. En esta transformación Cauchy fue uno de los grandes precursores, junto con Gauss Y Abel. Gauss podía haber marcado el camino mucho antes de que Cauchy interviniera, pero no lo hizo, y fue el hábito de la inmediata publicación propio de Cauchy, y sus dotes para la enseñanza efectiva, los que realmente establecieron el rigor en el Análisis matemático.
    La segunda contribución de importancia fundamental se refiere a la faceta opuesta, a la combinatoria. Seducido por el método de Lagrange de la teoría de las ecuaciones, Cauchy comenzó la creación sistemática de la teoría de grupos. La naturaleza de esta teoría será explicada más tarde, y por el momento tan sólo haremos notar el carácter moderno del sistema de Cauchy.
    Sin preguntarse si lo que él inventaba tenía o no aplicaciones para las otras ramas de la Matemática, Cauchy desarrolló sus conceptos como sistema abstracto. Sus redecesores, con excepción del universal Euler, que lo mismo escribía una memoria sobre el enigma de los números que sobre la hidráulica o el "sistema del mundo", hallaron su inspiración partiendo de las aplicaciones de la Matemática. Esta afirmación tiene, como es natural, numerosas excepciones, especialmente en Aritmética; pero antes de Cauchy pocos, si hubo algunos, buscaron descubrimientos provechosos en las simples operaciones del Álgebra. Cauchy penetró más profundamente, vio las operaciones y sus leyes combinatorias que palpitaban bajo las simetrías de las fórmulas algebraicas, las aisló, y llegó así a la teoría de grupos. En la actualidad, esta teoría elemental, aunque intrincada, es de fundamental importancia en muchos campos de la Matemática pura y aplicada, desde la teoría de ecuaciones algebraicas, hasta la Geometría y la teoría de la estructura atómica. Constituye la ciencia de la Geometría de los cristales, para sólo mencionar una de sus aplicaciones. Sus ulteriores desarrollos (en la parte analítica) se extienden hasta alcanzar la mecánica superior y la moderna teoría de ecuaciones diferenciales.
    La vida y carácter de Cauchy nos recuerdan los de Don Quijote: no sabemos si reír o llorar, y nos contentamos con renegar. Su padre, Louis-François, era un ejemplo de virtud y religiosidad, cosas ambas excelentes, pero en las que es fácil excederse. Los cielos saben cómo Cauchy padre pudo escapar de la guillotina, pues era un jurista parlamentario, un caballero culto, un estudioso de los clásicos, un católico fanático y, por si fuera poco, oficial de policía en París cuando cayó la Bastilla. Dos años antes de que estallara la Revolución contrajo matrimonio con Marie-Madeleine Desestre, una excelente mujer, no muy inteligente, que, como él, también era una católica fanática.

  • Suponiendo que sea exacta la opinión comúnmente aceptada de la importancia de la obra de Copérnico, hay que admitir que el más alto galardón o la más grave condenación humana posible es llamar a otro hombre el "Copérnico" de alguna cosa. Cuando consideremos lo que Lobatchewsky hizo al crear la Geometría no-euclidiana y comprendamos su significación para todo el pensamiento humano del cual la Matemática es sólo una parte pequeña, aunque muy importante, probablemente aceptaremos que Clifford (1845-1879), que era un gran geómetra y bastante más que un simple matemático, no exageró al calificar a Lobatchewsky como "el Copérnico de la geometría".
    Nikolas Ivanovitch Lobatchewsky, segundo hijo de un modesto funcionario del gobierno, nació el 2 de noviembre de 1793 en el distrito de Makarief, gobernación de Nijni Novgorod, Rusia. El padre murió cuando Nikolas tenía siete años, dejando a su mujer, Praskovia Ivanovna, el cuidado de sus tres hijos pequeños. Como el sueldo del padre mientras vivió apenas bastaba para mantener a su familia, la viuda quedó en extrema pobreza. Se trasladó a Kazan, donde preparó lo mejor que pudo a sus hijos para ingresar en la escuela, y tuvo la satisfacción de ver cómo uno tras otro ingresaron en el Instituto. Nikolas fue admitido en 1802, teniendo 8 años. Sus progresos fueron enormemente rápidos tanto en la matemática como en los clásicos. A los 14 años estaba preparado para ingresar en la Universidad. En 1807 ingresó en la Universidad de Kazan, fundada en 1805, en donde transcurrieron los siguientes 40 años de su vida como estudiante, profesor ayudante, profesor y finalmente Rector. Deseando elevar la Universidad de Kazan al nivel de las de Europa, las autoridades universitarias habían traído de Alemania distinguidos profesores. Entre éstos se hallaba el astrónomo Littrow, que más tarde fue director del observatorio de Viena.
    Los profesores alemanes rápidamente reconocieron el genio de Lobatchewsky y le alentaron.En 1811, teniendo 18 años, Lobatchewsky obtuvo su título después de una breve reyerta con las autoridades universitarias en cuya ira había incurrido por su exuberancia juvenil. Los amigos alemanes de la Facultad le defendieron y obtuvo su título. Por esta época su hermano mayor Alexis estaba encargado de los cursos elementales de Matemática para los funcionarios secundarios del gobierno, y cuando Alexis tomó licencia por enfermedad, Nikolas fue su sustituto. Dos años más tarde, teniendo 21 años, Lobatchewsky fue nombrado "profesor extraordinario", equivalente al profesor asistente de otras Universidades.
    El nombramiento de Lobatchewsky como profesor ordinario tuvo lugar en 1816, a la precoz edad de 23 años. Sus deberes eran pesados. Además del curso de Matemática fue encargado de los cursos de astronomía y de física, el primero para sustituir a un colega que disfrutaba de licencia.
    El extraordinario equilibrio con que realizó su pesada labor hizo de él un candidato para que se le encargaran nuevos trabajos, basándose en la teoría de que un hombre capaz de hacer muchas cosas es capaz de hacer todavía más, y por entonces Lobatchewsky fue nombrado bibliotecario de la Universidad y conservador del Museo de la Universidad donde reinaba un desorden caótico.
    Los estudiantes suelen ser una masa ingobernable antes de que la vida les enseñe que no se trata simplemente de ganar lo necesario para vivir. Entre los innumerables deberes de Lobatchewsky, desde 1819 hasta la muerte del zar Alejandro en 1825, se contaba el de ser Inspector de todos los estudiantes de Kazan, desde los asistentes de las escuelas elementales hasta los hombres ya hechos que seguían cursos para postgraduados en la Universidad. Esta inspección se refería especialmente a las opiniones políticas de los estudiantes. Podemos imaginar lo ingrato de tal tarea. La habilidad con que Lobatchewsky supo desenvolver para enviar sus informes día tras día y año tras año a sus suspicaces superiores sin ser tachado de benevolencia para el espionaje, y sin perder el sincero respeto y el cariño de los estudiantes, dice más de su capacidad administrativa que todos los honores y medallas que pudiera conferirle el gobierno, y con las que él gustaba adornarse en las ocasiones oportunas.
    Las colecciones del Museo de la Universidad constituían un increíble revoltijo. Un desorden análogo hacía prácticamente inutilizable la abundante biblioteca. Lobatchewsky fue encargado de poner orden. Como reconocimiento a sus señalados servicios las autoridades le elevaron al cargo de Decano de la Facultad de Matemática y Física, pero como se olvidaron de votar los fondos necesarios para ordenar la biblioteca y el museo, Lobatchewsky hizo este trabajo con sus propias manos, catalogando, limpiando el polvo, cuidando de las vitrinas, y hasta si era necesario barriendo.
    Con la muerte de Alejandro, en 1825, las cosas parecieron mejorar. El funcionario responsable de la maliciosa persecución de la Universidad de Kazan fue eliminado al ser considerado como demasiado corrompido para desempeñar un cargo del gobierno, y su sucesor nombró un conservador profesional para aliviar a Lobatchewsky de sus infinitas tareas de catalogar libros, limpiar el polvo a las muestras de numerales y atacar la polilla de los pájaros disecados.
    Necesitando apoyo moral y político para su obra en la Universidad, el nuevo conservador influyó para que fuera nombrado Rector Lobatchewsky, cosa que se logró el año 1827. El matemático se hallaba ahora a la cabeza de la Universidad, pero la nueva posición no era una sinecura. Bajo su capaz dirección todo el cuerpo docente fue reorganizado, siendo nombrados nuevos y mejores hombres. La instrucción fue liberalizada, a pesar de la función oficial, la biblioteca adquirió un nivel superior de suficiencia científica, se adquirieron los instrumentos científicos requeridos para la investigación y la enseñanza, se fundó y equipó un observatorio, proyecto acariciado por el enérgico Rector, y la amplia colección mineralógica donde estaban representados todos los minerales de Rusia, fue puesta en orden y constantemente enriquecida.

  • Un astrólogo del año 1801 podría haber leído en las estrellas que una nueva galaxia de genios matemáticos se estaba formando para inaugurar el siglo más importante de la historia de la Matemática. En toda esa galaxia de talentos no habría una estrella más brillante que Niels Henrik Abel, el hombre de quien Hermite dijo: "Ha legado a los matemáticos algo que les mantendrá activos durante 500 años".
    El padre de Abel era pastor de la pequeña aldea de Findó, en la diócesis de Kristiansand,
    Noruega, donde su segundo hijo, Niels Henrik, nació el 5 de agosto de 1802. En la familia paterna varios antepasados se habían distinguido en las actividades eclesiásticas, y todos, incluyendo el padre de Abel, eran hombres cultos. Anne Marie Simonsen, la madre de Abel, se distinguió principalmente por su gran 'hermosura, el amor a los placeres y por su carácter caprichoso, una combinación muy notable para ser la compañera de un pastor. Abel heredó de ella su hermosa presencia y el deseo muy humano de gozar de algo que no fueran los duros trabajos cotidianos, deseo que rara vez pudo satisfacer.
    El pastor fue bendecido con siete hijos en una época en que Noruega estaba extraordinariamente empobrecida, como consecuencia de las guerras con Inglaterra y Suecia. De todos modos la familia era muy feliz. A pesar de la pobreza, que no siempre les permitía llenar el estómago, se mantenían alegres. Existe un cuadro notable de Abel, siendo ya genio matemático, sentado ante el fuego; el resto de la familia habla y ríe en la habitación, mientras él sigue con un ojo su Matemática, y con el otro a sus hermanos y hermanas. El ruido jamás le distrajo y podía intervenir en la charla mientras escribía.
    Como algunos otros de los matemáticos de primera fila, Abel mostró pronto su talento. Un maestro brutal dio lugar involuntariamente a que se abriera el camino para Abel. La educación en las primeras décadas del siglo XIX, era viril, al menos en Noruega. Los castigos corporales, como el método más sencillo de endurecer el carácter de los discípulos y satisfacer las inclinaciones sadistas de los pedagogos, eran generosamente administrados por cualquier travesura. Abel no aprendió en su propia piel, como se dice que Newton aprendió después de los golpes aplicados por un compañero, sino por el sacrificio de otro estudiante, que fue castigado tan brutalmente que murió. Esto era ya demasiado, hasta para los mismos directores de la enseñanza, y el maestro fue relevado de su cargo. Un matemático competente, aunque en modo alguno brillante, llenó la vacante producida. Se trataba de Bernt Michael Holmboë (1795-1850), quien más tarde (1839) publicó la primera edición de las obras completas de Abel.
    Abel tenía a la sazón 15 años. Hasta entonces no había mostrado ningún talento particular para nada, salvo el hecho de que tolerara sus disgustos con cierto sentido humorístico. Bajo la cariñosa y clara enseñanza de Holmboë, Abel repentinamente descubrió lo que era. Teniendo 16 años comenzó a leer y a digerir perfectamente las grandes obras de sus predecesores, incluyendo algunas de Newton, Euler y Lagrange. La lectura de estos grandes matemáticos no sólo constituía su ocupación fundamental, sino su mayor deleite. Preguntado algunos años más tarde acerca de cómo pudo colocarse tan rápidamente en primera fila, replicó: "Estudiando a los maestros, no a sus discípulos", una prescripción que algunos autores de libros debían mencionar en sus prefacios como un antídoto de la venenosa mediocridad de su pedagogía mal inspirada.
    Holmboë y Abel pronto fueron íntimos amigos. Aunque el maestro no era un matemático creador, conocía y apreciaba las obras maestras de la Matemática, y gracias a sus sugestiones Abel pronto dominó las obras más difíciles de los clásicos, incluyendo las Disquisitiones Arithmeticae de Gauss.

  • El apellido Jacobi aparece frecuentemente en la Ciencia, no siempre refiriéndose al mismo individuo. En el año 1840 un Jacobi muy famoso, M. H. tuvo un hermano relativamente obscuro, C. G. J., cuya reputación era insignificante al lado de la de M. H. Luego la situación se invirtió: C. G. J. es inmortal, mientras que M. H. va hundiéndose rápidamente en la oscuridad del limbo. M. H. adquirió fama como fundador de la galvanoplastía, charlatanismo que estuvo de moda. La fama de C. G. J., mucho más limitada pero mucho más honda, se basa en la Matemática. Durante su vida el matemático fue siempre confundido con su hermano más famoso, o, todavía peor, felicitado por su involuntario parentesco con el charlatán sinceramente engañado. Al fin C. G. J. no pudo resistir más: "Perdón, señora, contestó a una entusiasta admiradora de M. H. que le felicitaba por tener un hermano tan distinguido, pero yo soy mi hermano". En otra ocasión C. G. J. replicó malhumorado,: "Yo no soy su hermano, él es mi hermano".
    Carl Gustav Jacob Jacobi nació en Postdam, Prusia, Alemania, el 10 de diciembre de 1804, siendo el segundo hijo de un próspero banquero, Simón Jacobi, y de su mujer (cuyo apellido era Lehmann). Fueron cuatro hermanos, tres varones, Moritz, Carl y Eduard, y una. mujer Therese. El primer maestro de Carlos fue uno de sus tíos maternos, quien enseñó al muchacho las lenguas clásicas y Matemáticas, preparándolo para que ingresara en el Instituto de Postdam, en 1816, cuando tenía 12 años. Desde el principio Jacobi dio pruebas de poseer una "mente universal", según declaró el Rector del Instituto cuando el muchacho salió de él en 1821 para ingresar en la Universidad de Berlín. Como Gauss, Jacobi pudo haber logrado una gran reputación en filología, si no le hubiera atraído más fuertemente la Matemática. Habiendo observado que el muchacho tenía genio matemático, el maestro (Heinrich Bauer) dejó que Jacobi trabajara como quisiera, después de una prolongada reyerta en la que Jacobi se reveló, negándose a aprender la Matemática de memoria y siguiendo reglas.
    El desarrollo matemático de Jacobi ofrece en ciertos respectos un curioso paralelo con el de su gran rival Abel. Jacobi también leía a los maestros; las obras de Euler y Lagrange le enseñaron Álgebra y Cálculo y le hicieron conocer la teoría de números. Esta precoz autoinstrucción iba a dar a la primera obra sobresaliente de Jacobi, sobre funciones elípticas, su dirección definida, y Euler, el maestro de los recursos ingeniosos, encontró en Jacobi su brillante sucesor. Por su aguda capacidad para tratar problemas de Álgebra, Euler y Jacobi no han tenido rival, como no sea el genio matemático hindú Srinivasa Ramanujan, en nuestro propio siglo. Abel también trataba las fórmulas como un maestro, cuando así deseaba, pero su genio fue más filosófico, menos formal que el de Jacobi. Abel está más cerca de Gauss, al insistir acerca del rigor, que lo estaba Jacobi, pues aunque éste no carecía de rigor, su inspiración parece haber sido más formalista que rigorista.
    Abel tenía dos años más que Jacobi. Sin saber que Abel había abordado el estudio de la ecuación general de quinto grado, en 1820, Jacobi, en el mismo año, intentó una solución, reduciendo la ecuación general de quinto grado a la forma:
                                             Recorte de pantalla
    y demostrando que la solución de esta ecuación podía ser deducida de la de una cierta ecuación de décimo grado. Aunque el intento quedó abortado, enseñó a Jacobi una buena cantidad de Álgebra, y constituyó un paso de importancia en su educación matemática. Pero no parece que se le ocurriera, como se le ocurrió a Abel, que la ecuación general de quinto grado no se podía resolver algebraicamente. Esta falta de imaginación o de visión, o como queramos llamarla, por parte de Jacobi es típica de la diferencia entre él y Abel. Jacobi, que tenía una mente objetiva magnífica y cuyo corazón no albergaba celos de ninguna clase dijo, refiriéndose a una de las obras maestras de Abel: "Está por encima de mis elogios y por encima de mis propias obras".
    Los estudios de Jacobi en Berlín duraron desde abril de 1821 hasta mayo de 1825. Durante los primeros dos años dedicó su tiempo igualmente a la filosofía, a la filología y a la Matemática. En el seminario filológico Jacobi atrajo la atención de P. A. Boeckh, un renombrado humanista que había publicado, entre otras obras, una excelente edición de Pindaro. Boeckh, felizmente para las Matemáticas, fue incapaz de atraer a su notable discípulo a los estudios clásicos para que constituyeran la disciplina de toda su vida. En Matemática poco era lo que se ofrecía para un estudiante ambicioso, y Jacobi continuó su estudio privado de maestros. Las conferencias universitarias de temas matemáticos eran consideradas por Jacobi como pura charlatanería. En este punto Jacobi era hasta grosero, aunque sabía ser cortés como un buen palaciego cuando quería lograr que algún amigo matemático consiguiera una posición digna de sus méritos.
    Mientras Jacobi estaba dedicado a la labor de hacer de sí mismo un matemático, Abel ya había iniciado el camino que habría de conducir a Jacobi a la fama. Abel había escrito a Holmboë el 4 de agosto de 1823, comunicándole que estaba trabajando en las funciones elípticas: "Esta pequeña obra, como recordarás, se ocupa de las inversas de las trascendentes elípticas, y he demostrado alguna cosa [que parece] imposible. He solicitado a Degen que lea tan pronto como pueda desde el principio al fin esta obra, pero no puede encontrar la falsa conclusión ni comprender donde está el error; Dios sabe cómo voy a salir de esto". Por una curiosa coincidencia Jacobi dirigía su actividad a la Matemática casi precisamente en la época en que Abel escribía esto. La diferencia de dos años en la edad de estos jóvenes (Abel tenía 21 y Jacobi 19) tiene más importancia que dos décadas cuando se llega a la madurez. Abel había partido veloz, pero Jacobi, sin saber que tenía un competidor en la carrera, pronto le alcanzó. La primera gran obra de Jacobi tuvo lugar en el campo cultivado por Abel de las funciones elípticas. Antes de continuar esta descripción haremos un resumen de su atareada vida.

  • William Rowan Hamilton es indudablemente el hombre de ciencia más importante que Irlanda ha producido. Subrayamos su nacionalidad, pues el impulso que se halla tras la actividad incesante de Hamilton fue su deseo confesado de poner su soberbio genio al servicio y gloria de su país nativo. Algunos han pretendido que era descendiente de escoceses. Hamilton mismo insiste en que era irlandés, y ciertamente es difícil para un escocés ver algo de escocés en el más grande y más elocuente matemático de Irlanda. Teniendo 17 años Hamilton había dominado la Matemática, siguiendo el Cálculo integral, y pudo conocer la astronomía matemática, necesaria para ser capaz de calcular los eclipses. Leyó a Newton y a Lagrange.

  • Estaba escrito que a Abel lo mataría la pobreza, y a Galois la estupidez. En toda la historia de la ciencia no hay ejemplo más completo del triunfo de la crasa estupidez sobre el indomable genio que el proporcionado por la vida extraordinariamente breve de Evariste Galois. La exposición de sus infortunios puede constituir un monumento siniestro para los pedagogos vanidosos, para los políticos inescrupulosos y para los académicos engreídos. Galois no era un "ángel inútil", pero hasta su magnífica capacidad tenía que caer vencida ante la estupidez que se alineó contra él, y Galois destrozó su vida luchando con los necios, uno tras otro.

  • Los jóvenes doctores en Matemática que buscan ansiosamente cargos donde su disciplina y talentos puedan desempeñar algún papel, muchas veces se preguntan si es posible para un hombre realizar largo tiempo la enseñanza elemental y mantener viva la llama matemática. La vida de Boole es una respuesta parcial; la carrera de Weierstrass, el príncipe de los analistas, "el padre del Análisis moderno", es concluyente. Antes de considerar detalladamente la obra de Weierstrass, le situaremos cronológicamente con respecto a aquellos de sus contemporáneos alemanes que, como él, dieron, al menos, un nuevo aspecto al vasto imperio de la Matemática, durante la segunda mitad del siglo XIX y las tres primeras décadas del XX.



  • ¡Oh!, nosotros no leemos nada de lo que hacen los matemáticos ingleses". Esta observación característica de los países del continente fue la respuesta de un distinguido matemático europeo cuando fue interrogado acerca que si había leído una obra reciente de uno de los principales matemáticos ingleses.
    Esta no es la clase de anécdotas que los matemáticos gustan de contar de sí mismos, pero como ilustra admirablemente esa característica de los matemáticos ingleses, la originalidad insular, que ha sido la principal distinción de la escuela británica, constituye la introducción ideal a la vida y obra de uno de los matemáticos ingleses de más originalidad insular que Inglaterra ha producido, George Boole.

  • Los matemáticos profesionales que con propiedad pueden ser llamados hombres de negocios son extraordinariamente raros. El que más se aproxima a este ideal es Kronecker, quien se las arregló de modo que cuando tenía 33 años pudo ya dedicar su talento soberbio a la Matemática mucho más cómodamente de lo que la mayor parte de los matemáticos han podido hacer. La vida de Leopold Kronecker fue fácil desde el día de su nacimiento. Hijo de judíos ricos, nació el 7 de diciembre de 1823 en Liegnitz, Prusia. Por un inexplicable descuido de los biógrafos oficiales de Kronecker (Heinrich Weber y Adolf Kneser) nada se sabe acerca de la madre de Leopold, pues se limitaron al padre, quien tenía un negocio mercantil floreciente.

  • Refiriéndose a Coleridge, se ha dicho que escribió poca poesía de primer orden, pero que esa poca está hecha de oro. Lo mismo podría decirse de Bernhard Riemann, cuyos frutos matemáticos apenas bastan para llenar un volumen en octavo. También podría decirse que Riemann revolucionaba todo aquello que tocaba. Uno de los matemáticos más originales de los tiempos modernos, Riemann, heredó por desgracia una precaria constitución, y murió antes de que madurase una décima parte de la dorada cosecha de su fértil cerebro. Si hubiera nacido un
    siglo más tarde, es probable que la ciencia médica hubiera sido capaz de alargar su vida veinte o treinta años y la Matemática no hubiera tenido que esperar la aparición de un sucesor.

  • Es un hecho curioso que aunque la Aritmética, la teoría de números, ha sido la madre fecunda de problemas más profundos y de métodos más poderosos que cualquier otra disciplina de la Matemáticas ha sido de ordinario considerada al margen del progreso principal, como un espectador más o menos indiferente de las grandes conquistas de la Geometría y del Análisis, particularmente en sus servicios a la ciencia física, y son pocos, relativamente, los grandes matemáticos de los últimos dos mil años que han dedicado sus más grandes esfuerzos al progreso de la ciencia del "número puro".


  • Poincaré fue el último hombre que consideró como su reino toda la Matemática, tanto pura como aplicada. Se cree, de ordinario, que sería imposible para un ser humano actual comprender ampliamente y mucho menos hacer obra creadora en más de dos de las cuatro principales divisiones de la Matemática, la Aritmética, el Álgebra, la Geometría y el Análisis, por no decir nada de la astronomía y de la física matemática. Sin embargo, cuando en el año 1880 se iniciaba la gran carrera de Poincaré se creía, en general, que Gauss había sido el último de los universalistas matemáticos, y parecía imposible que el ambicioso joven pudiera dominar todo el campo de la Matemática.

  • La discutida Mengenlehre (teoría de conjunto) creada en 1874 - 1895 por Georg Cantor puede muy bien ser considerada, por su orden cronológico, como la conclusión de toda la historia. Este tema es un ejemplo, en la Matemática, del colapso general de aquellos principios
    que los profetas del siglo XIX, previendo todas las cosas, pero no el gran cataclismo, creyeron que constituían los fundamentos de todas las cosas desde la ciencia física a los gobiernos democráticos.Todas las facetas han tenido sus representantes en todas las épocas del pensamiento matemático, sea que tal pensamiento haya sido disfrazado por las paradojas, como en el caso de Zenón, o por sutilezas lógicas, como en el caso de los más amargados lógicos de la Edad Media.

  Esta sección detalla la biografía de los Grandes Matemáticos de la Historia, un trabajo extraído de la obra "Los Grandes Matemáticos", cuyo título original en ingles es "Men of Mathematics", es un conocido libro de la historia de las matemáticas, escrito en 1937 por el Matemático Erick Temple Bell.
Bibliografía
de Grandes
Matemáticos

© www.cienciamatematica.com | 2009-2018
® Todos los Derechos Reservados